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Ti(III)-mediated radical cyclization of b-aminoacrylate containing 2,3-epoxy alcohol moieties led to the
formation of highly substituted piperidine and pyrrolidine rings. The pyrrolidine ring system was then
transformed into an indolizidine framework present in many natural products.
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Piperidine, pyrrolidine, and indolizidine/quinolizidine are
important structural scaffolds of several natural products.1 In the
literature, radical cyclization of b-alkoxyacrylates and b-aminoac-
rylates has been extensively used as versatile tools for the con-
struction of oxacyclic2,3 and azacyclic4 rings with the latter
having applications in the synthesis of many alkaloids. Recently,
we have reported that radicals formed during the opening of 2,3-
epoxy alcohols 1 and 3 with Cp2Ti(III)Cl5 could be trapped intramo-
lecularly by a suitably positioned a,b-unsaturated ester moiety in
the same molecule giving rise to a cyclohexane ring system 2,6 tet-
rahydrofurans, and tetrahydropyrans 4 (see Scheme 1).7

Focusing on our work on the synthesis of carbocycles, oxacycles,
and azacycles via Ti(III)-mediated radical cyclization reactions, we
wish to report here the cyclization reaction of b-aminoacrylates
through epoxide opening followed by 5-exo and 6-exo cyclizations.
The details of the process are outlined in Schemes 2–4. Scheme 2
describes the synthesis of a highly substituted piperidine moiety.
The synthesis started from the commercially available compound
5. Tosylation of 5 with tosyl chloride followed by treatment with
methyl propiolate in the presence of N-methylmorpholine
(NMM) gave the ‘b-aminoacrylate’ intermediate 6.8 Cleavage of
the acetal 6 with formic acid followed by Wittig olefination with
ll rights reserved.
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stabilized ylide Ph3P@CHCOCH3 led to an a,b-unsaturated keto
compound 7.

A Luche reduction9 of 7 followed by a Sharpless kinetic resolu-
tion10 of the resultant racemic allylic alcohol afforded chiral epoxy
alcohol 8 >92% ee as determined using the Mosher ester method11

in 45% yield. With this epoxide in our hand, we turned our atten-
tion to carry out the crucial epoxide ring opening reaction followed
by cyclization. Accordingly, when epoxy alcohol 8 was treated with
Cp2Ti(III)Cl, generated in situ from Cp2TiCl2, Zn dust and freshly
fused ZnCl2, it underwent epoxide opening at the C-2 position from
OH
(ref 7)
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Scheme 1.
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Scheme 2. Reagents and conditions. (i) TsCl, Et3N, DMAP (cat.), CH2Cl2, 0 �C to rt, 2 h; (ii) methyl propiolate, NMM, CH2Cl2, rt, 1 h, 76% over two steps; (iii) 20% HCO2H,
pentane, 0 �C, 0.5 h; (iv) Ph3P@CHCOCH3, CH2Cl2, rt, 8 h, 85% over two steps; (v) NaBH4, CeCl3, MeOH, 0 �C, 15 min; (vi) L-(+)-DIPT, Ti(OiPr)4, TBHP, MS (4 Å), CH2Cl2, �20 �C,
0.5 h, 45% over two steps; (vii) Cp2TiCl2, ZnCl2, Zn, THF, �20 �C to rt, 8 h; (viii) 2,2-dimethoxypropane, CSA (cat.), CH2Cl2, 2 h, 40% in two steps.
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Scheme 3. Reagents and conditions. (i) 20% HCO2H, pentane, 0 �C, 0.5 h; (ii) Ph3P@CHCHO, C6H6, reflux, 6 h, 60% in two steps; (iii) NaBH4, CeCl3, MeOH, rt, 24 h, 55%; (iv) L-
(+)-DIPT, Ti(OiPr)4, TBHP, MS (4 Å), CH2Cl2, �20 �C, 2 h, 85%; (v) TBDPSCl, Et3 N, CH2Cl2, DMAP (cat.), 0 �C to rt, 4 h, 95%; (vi) Cp2TiCl2, ZnCl2, Zn, THF, �20 �C to rt, 6 h; (vii) 15,
K2CO3, MeOH, 0 �C, 2 h, 69% (combined yield) over two steps; (viii) TBAF, THF, 0 �C to rt, 2 h, 85%; (ix) Ac2O, Et3N, DMAP, CH2Cl2, 0 �C to rt, 0.5 h, 90%.
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Scheme 4. Reagents and conditions. (i) TBAF, THF, 0 �C, 1 h; (ii) NaIO4, THF/H2O (1:1) 0 �C, 15 min; (iii) NaBH4, MeOH, rt, 10 min; (iv) TBDPSCl, Et3N, CH2Cl2, DMAP (cat.), 0 �C
to rt, 4 h, 70% over four steps; (v) DIBAL-H, CH2Cl2, �78 �C, 15 min; (vi) Ph3P@CHCO2Et, CH2Cl2, rt, 8 h, 80% in two steps; (vii) LiBH4, THF/H2O (20:1), 0 �C to rt, 24 h,
quantitative; (viii) NaþC10H8

� DME, �60 �C, 10 min, 85%; (ix) Ph3P, CBr4, Et3 N, CH2Cl2, 24 h, 60%.
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the hydroxy side12 and gave a radical intermediate that underwent
facile intramolecular trapping by the acrylate moiety leading to the
formation of the six-membered piperidine as the only isolable
product along with some unidentified complex mixture of com-
pounds. Next, the resulting diol was protected as an acetonide to
furnish the bicyclic compound 9 as a white crystalline solid.13

The absolute stereochemistry of 9 was established unequivo-
cally from its single-crystal X-ray analysis14, which confirmed the
assigned structure (Fig. 1).

Next, we wanted to test this reaction in a substrate containing
primary epoxy alcohol. For this, we started from compound 6 as
shown in Scheme 3. Cleavage of the acetal protection with formic
acid followed by the Wittig reaction of the resulting aldehyde with
Ph3P@CHCHO in refluxing benzene furnished the a,b-unsaturated
aldehyde 10 in 60% yield over two steps.

The Luche reduction9 of 10 provided the allylic alcohol 11,
which was subjected to Sharpless asymmetric epoxidation10 using
L-(+)-DIPT to furnish chiral epoxy alcohol 12. However, treatment
of the primary epoxy alcohol with Cp2Ti(III)Cl gave only an allylic
alcohol15 and no cyclization product was obtained. The primary
hydroxyl group was then protected as a silyl ether and when this
epoxide 13 was treated with Ti(III) reagent, it opened the epoxy
ring at the C-3 position and the radical at C-3 was trapped intramo-
lecularly by the acrylate moiety furnishing a mixture of the desired
cyclized pyrrolidine 1416 (minor product, 20%) and a ring opened
acyclic product 15 (major one, 70%), which was probably formed
by in situ opening of the pyrrolidine 14. Both 14 and 15 were found
to have isomeric products at C3-H in a 4:1 ratio. Compound 15
could, however, be transformed back into the same pyrrolidine
14 in 70% yield on treatment with K2CO3 in methanol taking its
overall yield to 69%. In this process, we also obtained another
highly substituted tetrahydrofuran 16 (�4:1 diastereomeric mix-
ture) in 20% yield from 15. To know the absolute stereochemistry
of 14 (major isomer), we first assigned the stereochemistry of 17,
which was obtained from 16 in two steps. During the course of rad-
ical-mediated epoxide opening and subsequent base-catalyzed
cyclization, the absolute stereochemistry at C-4 of 14 was retained
Figure 1. X-ray crystal structure of 9. Perspective view of the two independent molecule
30% probability level, and H atoms are shown as small spheres of arbitrary radii.
as R as it was in the chiral epoxide 12. The C-5 protons decoupled
1H NMR spectrum of 17 showed a doublet (J = 1.62 Hz) at 5.03 ppm
for C4–H signal indicating that the C3–H and C4–H had a trans-
relationship and that the absolute stereochemistry of C-3 in 17,
and hence in 14, was S. The absolute stereochemistry of C-2 in
14 was established at a later stage.

Next, we wanted to transform the pyrrolidine moiety to an ind-
olizidine frame work, which is a very important building block for
many natural products.1e–k For the synthesis of the indolizidine
frame work, shown in Scheme 4, we started from 14 which was
treated with TBAF to provide diol 18. Further oxidative cleavage
of the resulting diol with NaIO4 gave an aldehyde that was treated
with NaBH4 to form primary alcohol 19. The protection of the pri-
mary alcohol of 19 as a TBDPS ether gave 20 as a single isomer after
removing the minor isomer via silica gel column chromatography.
The treatment of 20 with 1 equiv of DIBAL-H followed by Wittig
olefination with stabilized ylide Ph3P@CHCO2Et gave a,b-unsatu-
rated ester compound 2117 as a white crystalline compound. The
stereochemistry of 21 was determined by the 3J values of the
C2–H proton. It appeared as a ddd at 3.62 ppm with coupling con-
stants of 7.8, 3.7, and 3.5 Hz. One of the CH2–CH@CH–CO2Et pro-
tons appeared as a ddd at 2.67 ppm with coupling constants
14.5, 7.4, and 3.7 Hz. The other one appeared as a td at 2.58 ppm
with coupling constants 14.5 and 7.8 Hz. So the coupling constant
between C2–H and C3–H is 3.5 Hz, which indicates that the rela-
tionship between C2–H and C3–H was trans. The absolute stereo-
chemistry of 21 was, finally, unequivocally established from the
single-crystal X-ray analysis18 which clearly showed the assigned
structure (Fig. 2). Consequently, it also proved that the absolute
stereochemistry at C-2 in 14 was R.

Next, the reduction of 21 with LiBH4 gave saturated primary
alcohol 22, which on treatment with sodium naphthalenide19 pro-
vided the detosylated product 23. The transformation of primary
alcohol to the corresponding alkyl bromide followed by cycliza-
tion20 gave the desired indolizidine framework 24. The spectral
and analytical data of 2421 were in good agreement with those re-
ported in the literature.
s showing the atom-numbering schemes. Displacement ellipsoids are drawn at the



Figure 2. X-ray crystal structure of 21. Displacement ellipsoids are drawn at 30%
probability level, and H atoms are shown as small spheres of arbitrary radii.
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In conclusion, we have demonstrated the Ti(III)-mediated radi-
cal cyclization of ‘b-aminoacrylate’ containing 2,3-epoxy alcohols,
and this method can be extended to the synthesis of many natural
products containing piperidine, pyrrolidine, and indolizidine/quin-
olizidine moieties.
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compound 21. Integration and scaling of intensity data were accomplished
using the SAINT program.22 The structure was solved by Direct Methods using
SHELXS97,23 and refinement was carried out by full-matrix least-squares
technique using SHELXL97.23 The side chain atoms C30/C31/C32/C33/O6 are
disordered over two sites with occupancies of 0.711(14) and 0.289(14). The
geometries of the disordered atoms were refined with distance constraints. The
displacement parameters of the disordered atoms were restrained. All the
hydrogen atoms were positioned geometrically and were treated as riding on
their parent carbon atoms, with C–H distance of 0.93–0.98 Å and an O–
H = 0.82 Å, with Uiso(H) = 1.2Ueq (C) or 1.5Ueq (methyl C and O). The structure
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